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Abstract

We consider optimal dynamic multidrug therapies for human immunodeficiency
virus (HIV) type 1 infection. In this context we describe an optimal tracking problem
attempting to drive the states of the system to a stationary state in which the viral
load is low and the immune response is strong. We consider optimal feedback control
with full state as well as with partial state measurements. In the case of partial state
measurement, a state estimator is constructed based on viral load and T-cell count
measurements. We demonstrate by numerical simulations that by anticipation of and
response to the disease progression, the dynamic multidrug strategy reduces the viral
load, increases the CD4+ T-cell count and improves the immune response.
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1 Introduction

During the last two decades medical treatment for human immunodeficiency virus (HIV)
has greatly improved. Typically therapy can prolong time to onset of acquired immune de-
ficiency syndrome (AIDS) for tens of years. The prevailing medical practice is to prescribe
highly active antiretroviral therapy (HAART) which can reduce viral load and maintain
high CD4+ T-cell counts. This therapy involves combinations of three or more drugs
that are called “cocktails”. However, in spite of the success of HAART, some patients
develop resistance to one or more of the drugs in long term use. In these cases, it is
necessary to change the composition of HAART. In addition, there may be severe side
effects from the medication. Moreover, in developing countries, the expense of HAART is
often prohibitively high. Motivated by these and other reasons, the search for alternative
treatments is very active. In this paper we study dynamic multidrug therapies that can
lead to long-term control of HIV by the immune response system after discontinuation of
drug treatment.

HIV infects CD4+ T-cells (a fundamental component of the human immune response
system) and other target cells, hijacking their replication mechanisms. The infected cells
then produce a large number of copies of the virus. Currently the two most important cate-
gories of anti-HIV drugs are reverse transcriptase inhibitors (RTIs) and protease inhibitors
(PIs). A typical HAART cocktail consists of one or more RTIs and a PI. The reverse
transcriptase inhibitors prevent HIV from infecting cells by blocking the integration of the
viral code into the target cells. Protease inhibitors interfere with the replication of viruses
by infected cells. Virions may still be produced, but they are generally non infectious; that
is, they are not capable of infecting new target cells. In practice, RTIs cannot completely
block the virus integration of the DNA in target cells. Also, some infectious virions are
produced under PI medication. Every drug has a maximum efficacy which depends on
many factors such as, for example, viral strains present. One might expect that the effec-
tiveness of HIV therapy could be improved by developing dynamic multidrug strategies,
where the combination of drugs given to HIV patients changes over time in response to the
individual’s disease progression.

A number of different mathematical models based on systems of differential equations
have been developed, see for example [24]. Some of these models used to design dynamical
drug treatments are presented in [1, 8, 24, 25, 29, 30, 31]. In the long term pathogenesis of
HIV an immune response can play an important role. However, the models in [24, 25] do
not contain immune response while the authors in [1, 8, 29, 30, 31] do consider the immune
response. Since immune mechanisms responding to HIV are not yet very well understood,
various immune response models have been proposed in the literature. In this study, we
employ a model based on the models considered in [1, 2] which contain an immune effector
component.

Optimal treatment of HIV infection using a control theoretic approach is the subject of
substantial research activity. The papers [1, 3, 10, 13, 14, 26] consider only RTI medication
while the papers [20, 22] consider only PIs. In [33, 34, 35] all effects of a HAART medication
are combined and represented by one control variable in the model. In [2, 11, 17, 21, 28]
dynamical multidrug therapies based on RTIs and PIs are designed. In these proposed
therapies the dosage of both medications can change independently of each other and can
either be continuous or on-off types. Studies of continuously varying medical therapies have
been more common, see, e.g., [1, 3, 9, 10, 11, 13, 14, 17, 18, 20, 22, 28, 30]. More recently,
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the on-off type of treatment, which is also known as a structured treatment interruption
(STI), has attracted a lot of attention in the medical literature (see for example, [1, 2, 4]
and the references therein). A primary argument for use of STI therapy instead of continu-
ously varying dosage is that one might lower the risk of HIV mutating to strains which are
resistant to the current medication regimen. Recent results on structured treatment inter-
ruption schedules including optimal treatments are presented in [1, 2, 21, 34, 35]. In this
paper we consider optimal feedback treatment of HIV infection by continuously varying
dosages of RTIs and PIs in a nonlinear model including an immune response.

There are a number of control techniques that can be utilized to design dynamical
therapies for HIV. Open loop control has been employed in [1, 2, 10, 13, 14, 18, 20, 21, 26, 28]
and feedback control has been used in [3, 9, 11, 26, 33, 34, 35]. The papers [3, 9, 33] consider
the feedback control based on partial measurements. An estimator is employed to construct
the control in [3] while in [33] this possibility is only briefly mentioned. A linear quadratic
regulator (LQR) control based on Riccati equations is studied in [11].

For linear systems, LQR is a well-known and accepted methodology for the synthesis
of control laws. However, most mathematical models for biological systems, including
the HIV dynamics with immune response as studied in this paper, are nonlinear. One
of the promising and emerging methodologies for designing nonlinear controllers is the
state dependent Riccati equation (SDRE) approach in the context of nonlinear regulator
problems (see for example, [6, 7, 16, 23]). In essence, the SDRE method is a systematic way
of designing nonlinear feedback controllers by factoring the state dependent nonlinearity of
the state equations as a product of a state dependent matrix with the state vector. That
is, by using direct parameterization the nonlinear system is brought to a linear structure
with state dependent coefficient matrices. This parametrization is however not unique
and thus some flexibility in design is permissible. The state feedback control law is then
given in terms of the solution of a state dependent Riccati equation. As shown in [7], the
SDRE method is a powerful approach that is readily applicable to the nonlinear tracking
and nonlinear state estimation problems, since it is closely related to the algebraic Riccati
equation-based method used to find the feedback controls in the linear cases.

While the SDRE method has been applied earlier to mostly engineering type problems
such as flight dynamics simulation [7] and chemical vapor deposition [5], the idea of using
SDRE for combined drug/immune response control of HIV infection as presented here is
new. In addition, we propose, in this paper, a more systematic approach to parametrization
of the nonlinear system as a linear structure with state dependent coefficient matrices. In
our approach, the state dependent matrix is the Jacobian of the nonlinear system dynamics.
Our parametrization choice together with the proposed time discretization method imply
that the state dependent coefficient matrix is in fact the exact local linearization of the
nonlinear state dependent system dynamics at the current state of the system.

The outline of the paper is as follows. We begin in Section 2 with a description of
a rather complex HIV model. An optimal quadratic tracking problem is formulated in
Section 3 to drive the state of the system to a stationary state which we call the “healthy”
state (it has low viral load and high CD4+ T-cell count). Section 4 contains a direct
factorization of the nonlinear system into a linear form with state dependent coefficient
matrices. By then mimicking standard LQR formulation for linear systems, a suboptimal
feedback control is derived in Section 5. Sections 6 and 7 present the formulation of the
state estimator for more realistic control problems where only partial state measurements
are available for feedback. In Section 8 and 9 we summarize the numerical procedure
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for the synthesis of the suboptimal feedback controls. Numerical simulation results are
summarized in Section 10 and concluding remarks are presented in Section 11.

2 HIV Model

A modification of the mathematical model as presented in [1, 2] for the pathogenesis of HIV
is adopted for this paper. We include an additional state variable for non infectious virus
[12, 24]. The model is essentially based on the two target model proposed by Callaway and
Perelson in [12] without making distinction between short and long lived infected target
cells. In addition, it contains an immune response component similar to the one described
by Bonhoeffer, et al., in [8] with a Michaelis-Menten type saturation nonlinearity. Our
model captures many of the observed behavioral properties of HIV dynamics [8, 12] and,
furthermore, its mathematical properties are well-suited for designing multidrug therapies
using control theoretic approaches [1, 2]. The purpose of adding non infectious virus to the
model is to reflect what is actually being measured in clinical data. The viral load mea-
surements cannot differentiate between infectious and non infectious virus, detecting only
the total amount of virus. Hence, in order to construct a state estimator (for developing
dynamic multidrug therapy based on the disease progression) using such measurements,
we need to model also the non infectious virus population. It should be noted that the
inclusion of this additional state does not effect the dynamics of the other state variables.

The dynamics of our HIV model are described by the set of ordinary differential equa-
tions:

Ṫ1 = λ1 − d1T1 − (1− ε1)k1VIT1

Ṫ2 = λ2 − d2T2 − (1− fε1)k2VIT2

Ṫ ∗1 = (1− ε1)k1VIT1 − δT ∗1 −m1ET ∗1
Ṫ ∗2 = (1− fε1)k2VIT2 − δT ∗2 −m2ET ∗2
V̇I = (1− ε2)NT δ(T ∗1 + T ∗2 )− [c + (1− ε1)ρ1k1T1 + (1− fε1)ρ2k2T2]VI

V̇NI = ε2NT δ(T ∗1 + T ∗2 )− cVNI

Ė = λE + bE
T ∗1 + T ∗2

T ∗1 + T ∗2 + Kb
E − dE

T ∗1 + T ∗2
T ∗1 + T ∗2 + Kd

E − δEE.

(1)

In the model (1), the state variables are: T1, the uninfected CD4+ T-cells; T2, the unin-
fected target cells of second kind; T ∗1 , the infected T-cells; T ∗2 , the infected target cells of
second kind; V̇I , the infectious virus; V̇NI , the non infectious virus; and E, the immune
effectors. The controllers ε1 and ε2 represent the RTI and PI “efficacies”, respectively.
We do not give precise biological definitions for the target cells of second kind and the
immune effectors. They could, for example, be related to macrophages and cytotoxic T-
lymphocytes, respectively. For a more detailed description of the variables and rationale
for the model (1) we refer the reader to the articles [1, 2]. Table 1 contains the values of
parameters, which are the same as those used in [1, 2]. The only difference is that we use
mm3 (cubic millimeter) as our unit volume instead of ml (milliliter).

In order to simplify our subsequent discussions, we introduce the notation x and u to
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parameter value unit parameter value unit
λ1 10.0 cells

mm3·day
λ2 31.98× 10−3 cells

mm3·day

d1 0.01 1
day d2 0.01 1

day

k1 8.0× 10−4 mm3

virions·day k2 0.1 mm3

virions·day

m1 0.01 mm3

cells·day m2 0.01 mm3

cells·day

ρ1 1 virions
cells ρ2 1 virions

cells

δ 0.7 1
day c 13.0 1

day

f 0.34 – NT 100.0 virions
cells

λE 1.0× 10−3 cells
mm3·day

δE 0.1 1
day

bE 0.3 1
day dE 0.25 1

day

Kb 0.1 cells
mm3 Kd 0.5 cells

mm3

Table 1: The values of the parameters in the HIV model.

denote the state and control vectors, respectively. Thus we define

x =




T1

T2

T ∗1
T ∗2
VI

VNI

E




and u =
(

ε1
ε2

)
.

With the above notation, the HIV model (1) can be expressed in the generic form

ẋ = f(x) + B(x)u, (2)

where the precise representation for f(x) and B(x) will be described later in Section 4.
For feedback control we need current knowledge on the state of the system. In our

effort here we assume that partial state observations (T1 + T ∗1 , VI + VNI) are available.
This is representative of the type of clinical data widely discussed in the literature (see for
example, [1]). Hence, the output or observation takes the form

z =
(

z1

z2

)
=

(
1 0 1 0 0 0 0
0 0 0 0 1 1 0

)
x = Cx, (3)

where z1 and z2 represent the total CD4+ counts and the total viral loads, respectively.

3 An Optimal Tracking Problem Formulation

With the parameters given in Table 1 and the assumption of no medication (ε1 = ε2 = 0),
the model exhibits several steady states. These are described and analyzed in [1, 2] with the
non infectious virus VNI state always being zero in these steady states. We are particularly
interested in the so-called “healthy” steady state given by

T1 = 967.839
cells
mm3

, T2 = 0.621
cells
mm3

, T ∗1 = 0.076
cells
mm3

, T ∗2 = 0.006
cells
mm3

,

VI = 0.415
virions
mm3

, VNI = 0.0
virions
mm3

, and E = 353.108
cells
mm3

,

(4)
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which was also shown to be locally asymptotically stable. This means that after a suf-
ficiently small perturbation from (4), the trajectory of the state x returns to the stable
equilibrium (4). It is noted that this stable equilibrium exhibits a strong immune response,
low viral load and reasonably large target cell (T1) counts.

Highly active antiretroviral therapy (HAART) has proven to be very effective at re-
ducing the viral load to below detectable levels. However, sustainable suppression has
proven to be difficult using HAART because patients taking these drugs experience ad-
verse side effects that make adherence to therapy very difficult. In this paper we adopt a
control theoretic approach to find a suboptimal treatment strategy that can lead to high
immune effector levels and subsequent control of viral load without the need for further
drug therapy.

We formulate the problem of finding an effective multidrug therapy as a tracking prob-
lem. To this end, we define the objective functional

J(x, u) =
1
2

∫ ∞

0
{(VI − 0.415)2 + 10(E − 353.108)2 + (ε1/εmax

1 )2 + (ε2/εmax
2 )2}dt, (5)

where VI is the number of free virus and E represents the immune response. The control
variable ε1, where 0 ≤ ε1 ≤ εmax

1 , denotes the “efficacy” of the reverse transcriptase in-
hibitor. Similarly, the control variable ε2, 0 ≤ ε2 ≤ εmax

2 , represents the “efficacy” of the
protease inhibitor. We note that throughout we use the somewhat nonstandard terminol-
ogy “efficacy” interchangeably with the control level for the two drugs. The weights in (5)
have been determined a priori through a series of numerical experiments. The feedback
control algorithm proposed in Section 5 is not particularly sensitive to the choice of these
weights.

We denote the control vector u by

u =
(

ε1
ε2

)
.

We also introduce the following two vectors

ǔ =
(

0
0

)
and û =

(
εmax
1

εmax
2

)
.

The optimal tracking control problem is to find a dynamic multidrug therapy u(t) satisfying

min
ǔ≤u(t)≤û

J(x(t), u(t)) (6)

subject to the state equation given by (2) with initial condition x(0) = x0. We could, of
course, consider the restricted class of scaler controllers u where εi(t) = ε̂iu(t). While this
is the more usual treatment protocol in clinical practice, we are interested in investigation
here of the more flexible scenario where the RTI and PI levels can vary independently.
We also note that although we formulate a continuous feedback, current clinical practice
involves discrete observations and hence our approach, if implemented, would have to be
approximated by some type of interpolated estimate of the observed states (see especially
the computational examples below where impractical observation sampling is used).

We note that our mathematical model for HIV dynamics (2) is nonlinear. One of the
highly promising and emerging techniques for designing nonlinear feedback controllers is
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the state-dependent Riccati equation (SDRE) approach in the context of the nonlinear
regulator problem. This technique essentially uses direct parametrization to rewrite the
nonlinear state function f(x) in (2) as a product of a state-dependent coefficient matrix
with the state vector. This parametrization is, of course, not unique and one obvious
factorization is given in terms of the local linearization of the state equation.

4 A Local Linearization of the State Equation

To design a nonlinear feedback controller using the SDRE methodology, one usually first
rewrites the nonlinear dynamics (2) in the state-dependent coefficient form f(x) = A(x)x.
Underlying this form is the tacit assumption that f(0) = 0. Our HIV model (1) does not
satisfy this condition. For this reason we divide f(x) into two parts

f(x)− a and a,

where a is chosen in such a way that f(0) − a = 0. The simplest choice is a = f(0).
However, instead of using this simple choice we let a depend on x and we denote this
dependence by a(x). The choice of a(x) will become clear below.

We thus rewrite the state equation (2) as

ẋ = A(x)x + a(x) + B(x)u. (7)

That is, f(x) is parameterized as

f(x) = A(x)x + a(x). (8)

It has been noted [7, 16, 23] that the choice of A(x) in systems where f(0) = 0 is
not unique and the same also holds for our generalized formulation. However, for this
formulation a natural choice of the matrix A(x) is the Jacobian of f(x). That is,

A(x) =
∂f(x)

∂x
and a(x) = f(x)−A(x)x.

For our particular HIV model (1) the Jacobian is given by

A(x) =




−d1 − k1VI 0 0 0 −k1T1 0 0
0 −d2 − k2VI 0 0 −k2T2 0 0

k1VI 0 −δ −m1E 0 k1T1 0 −m1T
∗
1

0 k2VI 0 −δ −m2E k2T2 0 −m2T
∗
2

−ρ1k1VI −ρ2k2VI NT δ NT δ A55 0 0
0 0 0 0 0 −c 0
0 0 A73 A74 0 0 A77




,

where
A55 = −c− ρ1k1T1 − ρ2k2T2,

A73 = A74 =
bEKbE

(T ∗1 + T ∗2 + Kb)2
− dEKdE

(T ∗1 + T ∗2 + Kd)2
,

and

A77 =
(

bE

T ∗1 + T ∗2 + Kb
− dE

T ∗1 + T ∗2 + Kd

)
(T ∗1 + T ∗2 )− δE .
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Finally, the matrix B(x) in (7) is given by

B(x) =




k1VIT1 0
fk2VIT2 0
−k1VIT1 0
−fk2VIT2 0

ρ1k1VIT1 + fρ2k2VIT2 −NT δ(T ∗1 + T ∗2 )
0 NT δ(T ∗1 + T ∗2 )
0 0




.

5 Optimal Feedback Controllers

In this section we formally derive the nonlinear feedback controllers for the optimal tracking
problem described in Section 3. We first will assume that all state variables are available
for feedback. Our approach is to use the SDRE technique and mimic the standard linear
quadratic regulator formulation for linear systems.

We begin by rewriting the objective functional in (5) in the generic form

J(x, u) =
1
2

∫ ∞

0

[
(x− y)T Q (x− y) + uT Ru

]
dt,

where the dynamic tracking variable y represents the stable equilibrium state (4).
The Hamiltonian for our optimal control problem is given by

H(x, u, p) =
1
2

(x− y)T Q (x− y) +
1
2
uT Ru + pT (A(x)x + a(x) + B(x)u)

− w̌T (u− ǔ)− ŵT (û− u),

where the penalty multiplier vectors w̌ and ŵ, are introduced to account for the constraints
on the control variable u, are non negative and satisfy the conditions

w̌T (u− ǔ) = ŵT (û− u) = 0

at the optimal control. From the Hamiltonian, the necessary conditions for optimality are
found to be

ẋ = A(x)x + a(x) + B(x)u =
∂H
∂p

,

ṗ = −Q(x− y)−
[
d (A(x)x)

dx

]T

p−
[
d(a(x))

dx

]T

p−
[
d (B(x)u)

dx

]T

p = −∂H
∂x

,

0 = Ru + BT (x)p− w̌ + ŵ =
∂H
∂u

.

(9)

Let Ai: denote the ith row of A(x) and Bi: denote the ith row of B(x). Then

d (A(x)x)
dx

= A(x) +
d (A(x))

dx
x

= A(x) +




dA1:
dx1

x . . . dA1:
dxn

x
...

. . .
...

dAn:
dx1

x . . . dAn:
dxn

x




(10)
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and

d (B(x)u)
dx

=




dB1:
dx1

u . . . dB1:
dxn

u
...

. . .
...

dBn:
dx1

u . . . dBn:
dxn

u


 . (11)

The last equation of (9) leads to the optimal control

u = −R−1
(
BT (x)p− w̌ + ŵ

)
.

Mimicking the tracking problem for linear systems, we assume that the adjoint state has
the form

p = Π(x)x + b(x), (12)

where Π is a matrix, b is a vector and both are state dependent. To find Π(x) and b(x),
we differentiate (12) with respect to time along a trajectory and substitute the optimality
condition (9) for ṗ to obtain

−Q(x− y)−
[
d (A(x)x)

dx

]T

p−
[
d(a(x))

dx

]T

p−
[
d (B(x)u)

dx

]T

p = Π̇x + Πẋ + ḃ, (13)

where we use the notation

Π̇(x) =
n∑

i=1

Πxi(x)ẋi(t).

A similar definition also holds for ḃ. Substituting the expressions for p, ẋ, and u and
rearranging terms, we find
[(

Π̇(x) +
[
d (A(x))

dx
x

]T

Π(x) +
[
d (B(x)u)

dx

]T

Π(x) +
[
d(a(x))

dx

]T

Π(x)

)

+
(
Π(x)A(x) + AT (x)Π(x)−Π(x)B(x)R−1BT (x)Π(x) + Q

)
]

x

+ ḃ−Qy + Π(x)a(x)−Π(x)B(x)R−1 (−w̌ + ŵ)

+

(
AT (x)−Π(x)B(x)R−1BT (x) +

[
d (A(x))

dx
x

]T

+
[
d (B(x)u)

dx

]T

+
[
d(a(x))

dx

]T
)

b = 0.

(14)

If we approximate (see [7]) by assuming that the derivative terms

d (A(x))
dx

,
d (B(x)u)

dx
,

d(a(x))
dx

are small as well as that Π and b are stationary, it follows that the suboptimal solution to
the optimal tracking problem is given by

u = min (max (ũ, ǔ) , û) , (15)

where minimum and maximum are taken component wise and

ũ = −R−1BT (x)(Π(x)x + b̃(x)). (16)

9



It should be emphasized that the above approximate feedback law for dynamic multidrug
treatment is only suboptimal since the formula is only valid if both controls don’t violate
the constraints or violate the constraint simultaneously. However, our numerical studies
suggest that the feedback law works reasonably well even when these conditions are not
met. The state dependent function b̃(x) is given by the expression

b̃ =
(
AT (x)−Π(x)B(x)R−1BT (x)

)−1
(Qy −Π(x)a(x)) ,

where Π(x) satisfies the state dependent Riccati equation (SDRE)

AT (x)Π(x) + Π(x)A(x)−Π(x)B(x)R−1BT (x)Π(x) + Q = 0.

One approach involves obtaining the solution to SDRE is by use of symbolic software
packages such as Macsyma or Mathematica. However, once the nonlinear dynamics of the
system become complex, one has to rely on numerical approximation techniques to obtain
its solution. In Sections 8 and 9, we will discuss the numerical procedure that we used to
obtain the solution of the SDRE.

6 Compensator Design

For the synthesis of the nonlinear feedback control law derived in Section 5, full knowledge
of all the state variables is required. However, in many problems of practical interest, only
partial measurements of the state are available. In this section, we consider the problem of
designing a state estimator to be used in conjunction with the nonlinear feedback control
laws described earlier. We recall that the dynamical system and the observation are given
by

ẋ = f(x) + B(x)u
z = Cx,

where the output matrix C is defined by (3).
As in the linear problem, we design the state estimator to be of the form

ẋe = fe(xe) + F (Cx, xe),

where the functions fe and F are to be specified later. It should be emphasized that the
rationale behind the state estimator is that it is indeed the state estimator xe (and not the
state x) that is to be used in the nonlinear feedback control laws given by equations (15)-
(16). Defining the error function between the state and the state estimator as e = x− xe

and taking its derivative, we obtain

ė = f(x) + B(x)u− fe(xe)− F (Cx, xe).

If we choose fe(xe) = f(xe) + B(xe)u− F (Cxe, xe), the equation for the derivative of the
error function becomes

ė = (f(x) + B(x)u− F (Cx, xe))− (f(xe) + B(xe)u− F (Cxe, xe)) .

We next parameterize the nonlinear function f(x) as

f(x) = A(x)x + a(x),

10



and we choose F to be the product

F (Cx, xe) = L(xe)Cx.

The derivative of the error then becomes

ė = (A(x)x + a(x) + B(x)u− L(xe)Cx)− (A(xe)xe + a(xe) + B(xe)u− L(xe)Cxe)
= (A(xe)− L(xe)C) e + (B(x)−B(xe))u + A(x)x−A(xe)x + a(x)− a(xe)

= (A(xe)− L(xe)C) e +

(∑

i

∂B·i(xe)
∂x

ui

)
e +O (‖e‖2

)
+ f(x)− f(xe)−A(xe)e

=

(
A(xe) +

∑

i

∂B·i(xe)
∂xe

ui − L(xe)C

)
e +O (‖e‖2

)
,

(17)

where we have used the Taylor series

B(x)u = B(xe)u +

(∑

i

∂B·i(xe)
∂xe

ui

)
e +O (‖e‖2

)

and
f(x) = f(xe) + A(xe)e +O (‖e‖2

)
.

The subscript ·i refers to the ith column of the associated matrix. In order to simplify the
notation, we define

Â(xe) = A(xe) +
∑

i

∂B·i(xe)
∂xe

ui. (18)

Since the goal of designing a state estimator is that it approximates the true state of
the system closely, the error e should be small. Therefore, from equation (17), the term(
Â(xe)− L(xe)C

)
e dominates O (‖e‖2

)
. For this reason we neglect the term O (‖e‖2

)

from the rest of our discussion. Now, if we choose L(xe) so that the eigenvalues of Â(xe)−
L(xe)C have negative real parts, the estimation error e will converge to zero asymptotically
as t → ∞ (hence, xe will approach x). Since Â(xe) − L(xe)C and ÂT (xe) − CT LT (xe)
have the same eigenvalues, we can design the compensator gain L(xe) the same way that
we design the feedback gain for the nonlinear feedback control problem. In particular, the
compensator gain is given by

LT (xe) = N−1CΣ(xe)

or equivalently
L(xe) = Σ(xe)CT N−1,

where Σ(xe) satisfies the state estimator dependent Riccati equation

Σ(xe)ÂT (xe) + Â(xe)Σ(xe)− Σ(xe)CT N−1CΣ(xe) + M = 0. (19)

Here M is a symmetric positive semidefinite matrix and N is a symmetric positive definite
matrix. They are to be chosen so as to achieve a balance between desired convergence
properties and compensator gain.

11



7 State Equations and State Estimator

The system of differential equations for the state x and the state estimator xe are given by

ẋ = f(x) + B(x)u + ws(t)
ẋe = f(xe) + B(xe)u + L(xe)(Cx + wm(t)− Cxe).

(20)

The equations for x and xe are indeed coupled due to the term B(x)u in the first equation
of (20) and the term L(xe)Cx in the second equation of (20). Therefore, it is necessary to
solve both equations together. In the following we use the notation

x =
(

x
xe

)
and G(x) =

(
f(x) + B(x)u + ws(t)

f(xe) + B(xe)u + L(xe)(Cx + wm(t)− Cxe)

)
.

With this notation, the system of differential equations (20) can be expressed as

ẋ = G(x).

8 Discretization Method

We perform the time discretization using backward differentiation formulas (BDF) [15]
with a uniform time step ∆t. The solution at time k∆t is denoted by xk. Then the
discrete form of (20) using BDF formulas is given by

xk+1 = α∆tG(xk+1) +
q−1∑

i=0

βixk−i,

where q is the degree of the BDF and α and βi are constants that depend on q. The
first-order BDF is the implicit Euler method defined by:

q = 1, α = 1 and β1 = 1.

The second-order BDF is denoted by BDF2 and is given by:

q = 2, α =
2
3
, β1 =

4
3

and β2 = −1
3
.

With the BDF2 method it is necessary to perform the first step of integration using some
other numerical method, since it requires the solutions at two previous time steps. A
common choice is to use the implicit Euler method for the first time step. It can be shown
that this does not reduce the order of accuracy. It is well known that the implicit Euler
method and BDF2 have good stability properties [15].

Finally, we note that, at each time step, the implicit Euler method and the BDF2
method require the solution of system of nonlinear equations

xk+1 − α∆tG(xk+1) =
q−1∑

i=0

βixk−i

for xk+1 in terms of solutions at previous time steps, xk, xk−1, etc.

12



9 Solution to the Discrete Nonlinear Equations

The implicit time discretization requires us to solve nonlinear equations of the form

g(x) = x− α∆tG(x)−
p−1∑

i=0

βixk−i = 0. (21)

In the calculations reported on here, Newton’s iterative method [19] was used to obtain
the solution of (21). Let the ith iterate be denoted by x(i). Then Newton’s method solves
for the (i + 1)th iterate in terms of the ith iterate by

x(i+1) = x(i) − (I− α∆tJ)−1g(x(i)),

where J is the Jacobian matrix of G.
In the above formula, we need to evaluate G at x. That is, we must calculate

G(x) =
(

A(x)x + a(x) + B(x)u + ws(t)
A(xe)xe + a(xe) + B(xe)u + L(xe)(Cx + wm(t)− Cxe)

)
,

where the control is given by

u = min (max (ũ, ǔ) , û) ,

with
ũ = −R−1BT (xe)

(
Π(xe)xe + b̃(xe)

)
.

In order to do this we need to solve the state dependent Riccati equation

Π(xe)A(xe) + AT (xe)Π(xe)−Π(xe)S(xe)Π(xe) + Q = 0,

where we have used the notation S(xe) = B(xe)R−1BT (xe). In addition, the vector func-
tion b̃(xe) given by

b̃(xe) =
(
AT (xe)−Π(xe)S(xe)

)−1
(Qy −Π(xe)a(xe)) .

also must be computed. Finally, to evaluate the compensator gain L(xe), which is given
by

L(xe) = Σ(xe)CT N−1,

the dual state dependent Riccati equation

Σ(xe)ÂT (xe) + Â(xe)Σ(xe)− Σ(xe)CT N−1CΣ(xe) + M = 0,

with Â(xe) given by (18) also must be solved.
To obtain the Jacobian J of G, one can derive analytical formulas for J which are rather

cumbersome. In practice, it is more convenient to use a finite difference approximation
of the Jacobian J. For our application, the forward difference approximation that we
employed is sufficiently accurate and of low computational cost.

10 Simulation Results

The time period for simulations is 500 days. Unless otherwise stated we have used the time
step ∆t = 1/96, which corresponds to fifteen minutes. The discretization was performed
with the second-order backward differentiation formula using the implicit Euler method to
compute the first time step.

13



10.1 Full State Feedback Control

We first present simulation results where we assumed that full state observations are avail-
able for feedback.

10.1.1 Optimal treatment in the acute state

In our first example, we assume that medication starts immediately after HIV infection (an
unrealistic assumption in practice–see further comments below). In this case, the initial
values for the state variables are given by the acute state

T1 = 1000
cells
mm3

, T2 = 3.198
cells
mm3

, T ∗1 = 0.0
cells
mm3

, T ∗2 = 0.0
cells
mm3

,

VI = 0.001
virions
mm3

, VNI = 0.0
virions
mm3

, and E = 0.01
cells
mm3

.

(22)

In this example we also assume that the maximum “efficacies” to be εmax
1 = 0.7 and

εmax
2 = 0.3.

Figure 1 depicts the dynamics of the suboptimal reverse transcriptase inhibitor (RTI)
control ε1 and the protease inhibitor (PI) control ε2. The corresponding state progressions
are shown in Figure 2. After approximately 325 days the state variables have reached near
equilibrium and start to oscillate in the neighborhood of the stable “healthy” steady state
(4).

After 325 days the feedback control-based treatment calls for many cycles of on and
off therapy, each with a short duration of few hours. This type of protocol is difficult
for the patients to follow since, for example, many pills need to be taken together with
food. Therefore, to avoid this type of treatment schedule in the long term we propose to
terminate the medication when the viral load has reached a sufficiently low level. Thus the
medication will be administered only when the condition

VI + VNI > 1.0
virions
mm3

(23)

is satisfied. Figure 3 presents the resulting treatment regimen and Figure 4 depicts the
corresponding state variables. In this case, even though it does take longer for the state to
settle down to the “healthy” equilibrium state, the results confirm that once the system
reaches the stable equilibrium state, medication is no longer required. We remark that
because of the condition (23) we also do not give any medication during the first two days
after the infection, since during this time the viral load is below our limit. In practice, the
first treatment would be even further delayed since one would almost never be aware of
the infection early on or even when the lower load level in (23) is first exceeded.

So far in our numerical studies discussed above, we used the maximum efficacies εmax
1 =

0.7 and εmax
2 = 0.3. An important and interesting question is how low these efficacies can

be in order for state of the system to be able to reach the “healthy” equilibrium state.
In our previous work [2], the analysis revealed that without any medication the state will
converge to the unhealthy steady state (24) given below. Thus, there should be a threshold
boundary in the (εmax

1 , εmax
2 ) efficacy plane which indicates whether it is possible or not to

reach the “healthy” equilibrium state with any admissible drug therapy.
We investigated the influence of the maximum efficacies by varying both of them from

zero to one and carrying out a series of numerical simulations with the nonlinear feedback

14
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Figure 1: Multidrug therapy starting from the acute state.

controls for each of these combinations of bounds. Figure 5 depicts the immune effector E
after 500 days for these simulations. It is noted that in the white region of Figure 5, the
immune effector is around 350 cells

mm3 . Hence, for the values of the maximum efficacies in this
region the nonlinear suboptimal feedback control will bring the state of the system to the
“healthy” equilibrium state.

Finally, from Figure 5 we can observe a slight apparent lack of robustness of the pro-
posed nonlinear feedback control law. This is probably a consequence of the local lineariza-
tion of the nonlinear dynamics or the suboptimal nature of the approximate nonlinear
controller. For example, when the maximum efficacies are εmax

1 = 0.8 and εmax
2 = 0.0, the

“healthy” equilibrium state is reachable. However, when the maximum efficacy εmax
1 is

increased by 0.025, the “healthy” equilibrium state is no longer reachable.

10.1.2 Optimal treatment in the unhealthy steady state

In our second set of examples, we consider a patient who has not taken medication after
HIV infection and the disease progression is proceeding towards the unhealthy steady state

T1 = 163.573
cells
mm3

, T2 = 0.005
cells
mm3

, T ∗1 = 11.945
cells
mm3

, T ∗2 = 0.046
cells
mm3

,

VI = 63.919
virions
mm3

, VNI = 0.0
virions
mm3

, and E = 0.024
cells
mm3

.

(24)

Again the question is whether our suboptimal approximate nonlinear feedback controller
can transfer the system from the unhealthy state (24) to the “healthy” equilibrium state (4)
in finite time. We begin by letting the maximum efficacies be εmax

1 = 0.7 and εmax
2 = 0.3.

The dynamics of the suboptimal treatment strategy proposed by the nonlinear feedback
control are shown in Figure 6 and the corresponding state variables are plotted in Figure
7. Clearly, in this case the “healthy” equilibrium state is not reachable.
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Figure 2: Plots of the state variables with the y-axis in log10-scale.

Next we increase the maximum efficacy εmax
1 of the reverse transcriptase inhibitor to

be 0.75. The resulting optimal therapy regimen is depicted in Figure 8. The therapy does
bring the system to the “healthy” equilibrium state as can be seen in Figure 9. It is noted
that we discontinued the medication using the viral load condition (23) as proposed earlier.

As in the earlier example for acute infection, we investigated the combination of the
maximum efficacies εmax

1 and εmax
2 so that “healthy” equilibrium state is reachable. Figure

10 depicts the immune effector E after 500 days as a function of maximum efficacies. We
also plotted in Figure 11 contour lines of the so-called “total combined drug efficacy” (some
measure of the combined control level)

ε = 1− (1− ε1)(1− ε2)

as defined in [12]. The threshold boundary in Figure 10 approximates very well the 80%
total efficacy curve given by the equation ε = 0.8.

Figure 10 demonstrates that slightly smaller maximum efficacies are required than for
the acute state in Figure 5. This again suggests a slight lack of robustness in the nonlinear
feedback control for the acute state. It is most likely that the approximations are not
sufficiently accurate for the highly nonlinear transient period observed after the infection
in the acute state case.
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Figure 3: The medication levels starting from the acute state using the stopping criterion
based on the viral load.

10.2 Feedback Control and State Estimation

In this section, we consider the design and synthesis of nonlinear feedback control-based
treatments in which one only has partial state observations.

10.2.1 Inaccurate initial condition for the state estimator

We consider first the acute infection case where the initial value for the state x is given by
(22). We disturbed the initial value of the state estimator xe by 20% so that xe = 0.8x.
As in our earlier computational experiment, the maximum efficacies are εmax

1 = 0.7 and
εmax
2 = 0.3. For the computation of the estimator, the weighting matrices in (19) are chosen

to be
M = 0.01I2×2 and M = I7×7,

where Il,l denotes the l× l identity matrix. During the 100 first days in the simulation the
estimator xe has tendency to have negative components which is not feasible. In such a
case, we project the negative components to be zero.

Figure 12 records the suboptimal treatment protocol obtained using the estimator xe

in the nonlinear feedback control laws. The therapy dynamics are fairly similar to the
ones shown in Figure 3. Figure 13 depicts the Euclidean distance between the state and
the estimator. This plot clearly indicates that the state estimator converges to the state
asymptotically. In Figure 14 we plot the state variables and their estimators for the first
50 days. After 50 days it is difficult to discern the differences between the state and the
estimator in such plots and they are omitted.

10.2.2 Noisy measurements

We next consider the suboptimal feedback controller in the presence of noise in the obser-
vations. At the kth time step, we denote the measurement without noise and the noise
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Figure 4: Plots of the state variables using the stopping criterion based on the viral load
with the y-axis in log10-scale.

by Cxk and wk
m, respectively. We assume the noise to be lognormally distributed without

correlation between the components. Furthermore, we assume the noise has zero mean and
the variance of the ith component is taken to be σ2

i (Cxk)i. The assays measuring CD4
cell counts and viral loads typically have this type of measurement errors [27, 32]. Under
these assumptions the ith component of the noise is given by

(wk
m)i = exp

(
N

(
log(Cxk)i − 1

2
log(σ2

i + 1), log(σ2
i + 1)

))
− (Cxk)i,

where N (·, ·) is the normal distribution with the mean given by the first argument and
the variance given by the second argument. In the following experiment the parameter σ2

i

is chosen as σ2
i = (0.10)2. The measurements without the noise and with the noise are

graphed in Figure 15 where the observation sampling time is two hours.
In order to make the estimator xe sufficient for reasonable control, it appears to be

necessary to reduce the sampling time increments. For the next results, we used fifteen
second sampling time steps, that is, ∆t = 1/5760. We used the same initial values as in
the case without noise, that is, the state corresponds to the acute infection and the state
estimator initial value is 20% off.

Figure 16 depicts the optimal treatment strategy with imperfect measurements. Be-
cause of the noise the controls contain some oscillations from 250 days to 320 days. The
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Figure 5: The immune effector E after 500 days after HIV infection for different maximum
efficacies εmax

1 and εmax
2 . White and black colors corresponds to values around 370 cells

mm3 and
0.02 cells

mm3 , respectively.

short interruptions in the medications during the 143th day and the 305th day are probably
due to lack of robustness in our Newton solver and are thus an artifact of our computational
schemes. In Figure 17 we plot the state variables and their estimators for the entire 500
days and the Euclidean distance between them. Note that the estimators approximate very
well the true states of the system except at the beginning and the end of the simulations.
Despite these discrepancies, the suboptimal dynamic multidrug therapy is still very similar
to the one without noise in observations depicted in Figure 12.
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Figure 6: The suboptimal HIV treatment starting from the unhealthy steady state when
εmax
1 = 0.7.
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Figure 7: Plots of the state variables with the y-axis in log10-scale.
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Figure 8: The medication levels starting from the unhealthy steady state when εmax
1 = 0.75.
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Figure 9: Plots of the state variables with the y-axis in log10-scale.
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Figure 10: The immune effector E after 500 days after starting medication on the unhealthy
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Figure 11: Contour lines of the “total combined drug efficacy” ε = 1− (1− ε1)(1− ε2).
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Figure 12: The suboptimal dynamics treatment based on the state estimator.

-6

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250 300 350 400 450 500

Figure 13: The Euclidean distance between the state and state estimator with the y-axis
in log10-scale.

23



-2

-1

0

1

2

3

0 10 20 30 40 50

T1
est. T1

-2

-1

0

1

2

3

0 10 20 30 40 50

T1s
est. T1s

-4

-3

-2

-1

0

1

0 10 20 30 40 50

T2
est. T2

-4

-3

-2

-1

0

1

0 10 20 30 40 50

T2s
est. T2s

-2

-1

0

1

2

3

0 10 20 30 40 50

Vi
est. Vi

-2

-1

0

1

2

3

0 10 20 30 40 50

Vni
est. Vni

-2

-1

0

1

2

3

0 10 20 30 40 50

E
est. E

Figure 14: Plots of the state variables and corresponding estimators for the first 50 days
with the y-axis in log10-scale.

24



1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 50 100 150 200 250 300 350 400 450 500

T1+T1s

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 50 100 150 200 250 300 350 400 450 500

meas. T1+T1s

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450 500

Vi+Vni

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450 500

meas. Vi+Vni
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Figure 16: The optimal estimator-based treatment when there is noise in measurements.
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Figure 17: The states, their estimators and the Euclidean distance between them in the
lower right corner with the y-axis in log10-scale.
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11 Conclusions

We presented and used techniques and ideas from control theory to design and synthesize
nonlinear feedback control-based treatment regimes for HIV. The mathematical model for
HIV progression includes compartments for target cells, infected cells, virus, and immune
response that are subjected to multiple (RTI- and PI- type) drug treatments as controllers.
We have demonstrated through numerical simulations that by using a “target tracking”
approach, suboptimal feedback-based treatment strategies can be designed to move the
state of the system from an “unhealthy” state (high virus load and low immune response)
to a “healthy” one (with low viral load and high immune effector levels). An important
advantage of this drug regimen design is that once the viral load is controlled to very low
levels, the drug dosage can be reduced or completely terminated. Consequently, long term
pharmaceutical side effects could also be reduced. Thus, this approach suggests that by
anticipating and responding to the disease progression, dynamic feedback strategies such
as those designed in this paper could lead to long-term control of HIV after discontinuation
of therapy.
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